The G protein-coupled receptor (GPCR) protease-activated receptor 1 (PAR1) is a therapeutic target that was originally pursued with the aim of restricting platelet activation and the burden of cardiovascular diseases. In clinical studies, the use of orthosteric PAR1 inhibitors was associated with an increased risk of hemorrhage, including intracranial hemorrhage. Because (1) PAR1 is expressed by various cell types, including endothelial cells, (2) conveys in mice a physiological indispensable function for vascular development during embryogenesis, and (3) is subject to biased signaling dependent on the activating proteases, orthosteric PAR1 inhibition may be associated with unwanted side effects. Alternatively, the protease-activated protein C (aPC) and its variants can promote valuable anti-inflammatory signaling via PAR1. Most recently, small molecule allosteric modulators of PAR1 signaling, called parmodulins, have been developed. Parmodulins inhibit coagulation and platelet activation yet maintain cytoprotective effects typically provoked by PAR1 signaling upon the activation by aPC. In this study, we review the discovery of parmodulins and their preclinical data, summarize the current knowledge about their mode of action, and compare the structural interaction of parmodulin and PAR1 with that of other intracellularly binding allosteric GPCR modulators. Thus, we highlight the pharmaceutical potential and challenges associated with the future development of parmodulins.

1.
Ramachandran
R
,
Altier
C
,
Oikonomopoulou
K
,
Hollenberg
MD
.
Proteinases, their extracellular targets, and inflammatory signaling
.
Pharmacol Rev
.
2016
;
68
(
4
):
1110
-
1142
.
2.
Chandrabalan
A
,
Ramachandran
R
.
Molecular mechanisms regulating proteinase-activated receptors (PARs)
.
FEBS J
.
2021
;
288
(
8
):
2697
-
2726
.
3.
Capodanno
D
,
Bhatt
DL
,
Goto
S
, et al
.
Safety and efficacy of protease-activated receptor-1 antagonists in patients with coronary artery disease: a meta-analysis of randomized clinical trials
.
J Thromb Haemost
.
2012
;
10
(
10
):
2006
-
2015
.
4.
Griffin
JH
,
Zlokovic
BV
,
Mosnier
LO
.
Activated protein C: biased for translation
.
Blood
.
2015
;
125
(
19
):
2898
-
2907
.
5.
Shahzad
K
,
Kohli
S
,
Al-Dabet
MM
,
Isermann
B
.
Cell biology of activated protein C
.
Curr Opin Hematol
.
2019
;
26
(
1
):
41
-
50
.
6.
Lyden
P
,
Levy
H
,
Weymer
S
, et al
.
Phase 1 safety, tolerability and pharmacokinetics of 3K3A-APC in healthy adult volunteers
.
Curr Pharm Des
.
2013
;
19
(
42
):
7479
-
7485
.
7.
Zhang
P
,
Leger
AJ
,
Baleja
JD
, et al
.
Allosteric activation of a G protein-coupled receptor with cell-penetrating receptor mimetics
.
J Biol Chem
.
2015
;
290
(
25
):
15785
-
15798
.
8.
Gurbel
PA
,
Bliden
KP
,
Turner
SE
, et al
.
Cell-penetrating pepducin therapy targeting PAR1 in subjects with coronary artery disease
.
Arterioscler Thromb Vasc Biol
.
2016
;
36
(
1
):
189
-
197
.
9.
Michael
E
,
Covic
L
,
Kuliopulos
A
.
Lipopeptide pepducins as therapeutic agents
.
Methods Mol Biol
.
2022
;
2383
:
307
-
333
.
10.
Xu
H
,
Tilley
DG
.
Pepducin-mediated G protein-coupled receptor signaling in the cardiovascular system
.
J Cardiovasc Pharmacol
.
2022
;
80
(
3
):
378
-
385
.
11.
Dowal
L
,
Sim
DS
,
Dilks
JR
, et al
.
Identification of an antithrombotic allosteric modulator that acts through helix 8 of PAR1
.
Proc Natl Acad Sci U S A
.
2011
;
108
(
7
):
2951
-
2956
.
12.
Flaumenhaft
R
,
De Ceunynck
K
.
Targeting PAR1: now what?
.
Trends Pharmacol Sci
.
2017
;
38
(
8
):
701
-
716
.
13.
Gandhi
DM
,
Majewski
MW
,
Rosas
R
, et al
.
Characterization of protease-activated receptor (PAR) ligands: parmodulins are reversible allosteric inhibitors of PAR1-driven calcium mobilization in endothelial cells
.
Bioorg Med Chem
.
2018
;
26
(
9
):
2514
-
2529
.
14.
Chaturvedi
M
,
Schilling
J
,
Beautrait
A
,
Bouvier
M
,
Benovic
JL
,
Shukla
AK
.
Emerging paradigm of intracellular targeting of G protein-coupled receptors
.
Trends Biochem Sci
.
2018
;
43
(
7
):
533
-
546
.
15.
Covic
L
,
Kuliopulos
A
.
Protease-activated receptor 1 as therapeutic target in breast, lung, and ovarian cancer: pepducin approach
.
Int J Mol Sci
.
2018
;
19
(
8
):
2237
.
16.
Vu
T-KH
,
Hung
DT
,
Wheaton
VI
,
Coughlin
SR
.
Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation
.
Cell
.
1991
;
64
(
6
):
1057
-
1068
.
17.
Rasmussen
UB
,
Vouret-Craviari
V
,
Jallat
S
, et al
.
cDNA cloning and expression of a hamster α-thrombin receptor coupled to Ca2+ mobilization
.
FEBS Lett
.
1991
;
288
(
1-2
):
123
-
128
.
18.
Nystedt
S
,
Emilsson
K
,
Wahlestedt
C
,
Sundelin
J
.
Molecular cloning of a potential proteinase activated receptor
.
Proc Natl Acad Sci U S A
.
1994
;
91
(
20
):
9208
-
9212
.
19.
Ishihara
H
,
Connolly
AJ
,
Zeng
D
, et al
.
Protease-activated receptor 3 is a second thrombin receptor in humans
.
Nature
.
1997
;
386
(
6624
):
502
-
506
.
20.
Xu
WF
,
Andersen
H
,
Whitmore
TE
, et al
.
Cloning and characterization of human protease-activated receptor 4
.
Proc Natl Acad Sci U S A
.
1998
;
95
(
12
):
6642
-
6646
.
21.
Coughlin
SR
.
Thrombin signalling and protease-activated receptors
.
Nature
.
2000
;
407
(
6801
):
258
-
264
.
22.
Zhang
C
,
Srinivasan
Y
,
Arlow
DH
, et al
.
High-resolution crystal structure of human protease-activated receptor 1
.
Nature
.
2012
;
492
(
7429
):
387
-
392
.
23.
Cheng
RKY
,
Fiez-Vandal
C
,
Schlenker
O
, et al
.
Structural insight into allosteric modulation of protease-activated receptor 2
.
Nature
.
2017
;
545
(
7652
):
112
-
115
.
24.
Ayoub
MA
,
Trinquet
E
,
Pfleger
KDG
,
Pin
JP
.
Differential association modes of the thrombin receptor PAR 1 with Gαil, Gα12, and β-arrestin 1
.
FASEB J
.
2010
;
24
(
9
):
3522
-
3535
.
25.
Madhusudhan
T
,
Wang
H
,
Straub
BK
, et al
.
Cytoprotective signaling by activated protein C requires protease-activated receptor-3 in podocytes
.
Blood
.
2012
;
119
(
3
):
874
-
883
.
26.
Shahzad
K
,
Isermann
B
.
The evolving plasticity of coagulation protease-dependent cytoprotective signalling
.
Hamostaseologie
.
2011
;
31
(
3
):
179
-
184
.
27.
Madhusudhan
T
,
Ghosh
S
,
Wang
H
, et al
.
Podocyte integrin-β3 and activated protein C coordinately restrict RhoA signaling and ameliorate diabetic nephropathy
.
J Am Soc Nephrol
.
2020
;
31
(
8
):
1762
-
1780
.
28.
Tricoci
P
,
Huang
Z
,
Held
C
, et al
.
Thrombin-receptor antagonist vorapaxar in acute coronary syndromes
.
N Engl J Med
.
2012
;
366
(
1
):
20
-
33
.
29.
Morrow
DA
,
Braunwald
E
,
Bonaca
MP
, et al
.
Vorapaxar in the secondary prevention of atherothrombotic events
.
N Engl J Med
.
2012
;
366
(
15
):
1404
-
1413
.
30.
Lee
M
,
Saver
JL
,
Hong
K-S
,
Wu
H-C
,
Ovbiagele
B
.
Risk of intracranial hemorrhage with protease-activated receptor-1 antagonists
.
Stroke
.
2012
;
43
(
12
):
3189
-
3195
.
31.
Goto
S
,
Ogawa
H
,
Takeuchi
M
,
Flather
MD
,
Bhatt
DL
;
J-LANCELOT Japanese-Lesson from Antagonizing the Cellular Effect of Thrombin Investigators
.
Double-blind, placebo-controlled Phase II studies of the protease-activated receptor 1 antagonist E5555 (atopaxar) in Japanese patients with acute coronary syndrome or high-risk coronary artery disease
.
Eur Heart J
.
2010
;
31
(
21
):
2601
-
2613
.
32.
Wiviott
SD
,
Flather
MD
,
O’Donoghue
ML
, et al
.
Randomized trial of atopaxar in the treatment of patients with coronary artery disease
.
Circulation
.
2011
;
123
(
17
):
1854
-
1863
.
33.
O’Donoghue
ML
,
Bhatt
DL
,
Wiviott
SD
, et al
.
Safety and tolerability of atopaxar in the treatment of patients with acute coronary syndromes
.
Circulation
.
2011
;
123
(
17
):
1843
-
1853
.
34.
Griffin
CT
,
Srinivasan
Y
,
Zheng
Y-W
,
Huang
W
,
Coughlin
SR
.
A role for thrombin receptor signaling in endothelial cells during embryonic development
.
Science
.
2001
;
293
(
5535
):
1666
-
1670
.
35.
Aisiku
O
,
Peters
CG
,
De Ceunynck
K
, et al
.
Parmodulins inhibit thrombus formation without inducing endothelial injury caused by vorapaxar
.
Blood
.
2015
;
125
(
12
):
1976
-
1985
.
36.
VerPlank
L
,
Dockendorff
C
,
Negri
J
, et al
. Chemical genetic analysis of platelet granule secretion-probe 1.
Probe Reports from the NIH Molecular Libraries Program
.
National Center for Biotechnology Information
;
2010
https://www.ncbi.nlm.nih.gov/books/NBK55067/.
37.
VerPlank
L
,
Dockendorff
C
,
Negri
J
, et al
. Chemical genetic analysis of platelet granule secretion-probe 2.
Probe Reports from the NIH Molecular Libraries Program
.
National Center for Biotechnology Information
;
2010
https://www.ncbi.nlm.nih.gov/books/NBK55073/.
38.
VerPlank
L
,
Dockendorff
C
,
Negri
J
, et al
. Chemical genetic analysis of platelet granule secretion-probe 3.
Probe Reports from the NIH Molecular Libraries Program
.
National Center for Biotechnology Information
;
2010
https://www.ncbi.nlm.nih.gov/books/NBK55066/.
39.
Dockendorff
C
,
Aisiku
O
,
VerPlank
L
, et al
.
Discovery of 1,3-diaminobenzenes as selective inhibitors of platelet activation at the PAR1 receptor
.
ACS Med Chem Lett
.
2012
;
3
(
3
):
232
-
237
.
40.
Gandhi
DM
,
Rosas
R
,
Greve
E
, et al
.
The parmodulin NRD-21 is an allosteric inhibitor of PAR1 Gq signaling with improved anti-inflammatory activity and stability
.
Bioorg Med Chem
.
2019
;
27
(
17
):
3788
-
3796
.
41.
De Ceunynck
K
,
Peters
CG
,
Jain
A
, et al
.
PAR1 agonists stimulate APC-like endothelial cytoprotection and confer resistance to thromboinflammatory injury
.
Proc Natl Acad Sci U S A
.
2018
;
115
(
5
):
E982
-
E991
.
42.
Jain
A
,
Barrile
R
,
van der Meer
AD
, et al
.
Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics
.
Clin Pharmacol Ther
.
2018
;
103
(
2
):
332
-
340
.
43.
Han
H
,
Zhao
X
,
Liao
M
, et al
.
Activated blood coagulation factor X (FXa) contributes to the development of traumatic PVR through promoting RPE epithelial-mesenchymal transition
.
Invest Ophthalmol Vis Sci
.
2021
;
62
(
9
):
29
.
44.
van den Eshof
BL
,
Hoogendijk
AJ
,
Simpson
PJ
, et al
.
Paradigm of biased PAR1 (protease-activated receptor-1) activation and inhibition in endothelial cells dissected by phosphoproteomics
.
Arterioscler Thromb Vasc Biol
.
2017
;
37
(
10
):
1891
-
1902
.
45.
Aksoyalp
,
Nacitarhan
C
,
Erbasan
O
.
Which proteinase-activated receptor-1 antagonist is better?: evaluation of vorapaxar and parmodulin-2 effects on human left internal mammary artery endothelial function
.
Life Sci
.
2021
;
286
:
120045
.
46.
Joyce
DE
,
Gelbert
L
,
Ciaccia
A
,
DeHoff
B
,
Grinnell
BW
.
Gene expression profile of antithrombotic protein C defines new mechanisms modulating inflammation and apoptosis
.
J Biol Chem
.
2001
;
276
(
14
):
11199
-
11203
.
47.
Riewald
M
,
Petrovan
RJ
,
Donner
A
,
Mueller
BM
,
Ruf
W
.
Activation of endothelial cell protease activated receptor 1 by the protein C pathway
.
Science
.
2002
;
296
(
5574
):
1880
-
1882
.
48.
Maehata
Y
,
Miyagawa
S
,
Sawa
Y
.
Activated protein C has a protective effect against myocardial I/R injury by improvement of endothelial function and activation of AKT1
.
PLoS One
.
2012
;
7
(
8
):
e38738
.
49.
Nazir
S
,
Gadi
I
,
Al-Dabet
MM
, et al
.
Cytoprotective activated protein C averts Nlrp3 inflammasome–induced ischemia-reperfusion injury via mTORC1 inhibition
.
Blood
.
2017
;
130
(
24
):
2664
-
2677
.
50.
Al-Dabet
MM
,
Shahzad
K
,
Elwakiel
A
, et al
.
Reversal of the renal hyperglycemic memory in diabetic kidney disease by targeting sustained tubular p21 expression
.
Nat Commun
.
2022
;
13
(
1
):
5062
.
51.
Mosnier
LO
,
Gale
AJ
,
Yegneswaran
S
,
Griffin
JH
.
Activated protein C variants with normal cytoprotective but reduced anticoagulant activity
.
Blood
.
2004
;
104
(
6
):
1740
-
1744
.
52.
Dong
W
,
Wang
H
,
Shahzad
K
, et al
.
Activated protein C ameliorates renal ischemia-reperfusion injury by restricting Y-box binding protein-1 ubiquitination
.
J Am Soc Nephrol
.
2015
;
26
(
11
):
2789
-
2799
.
53.
Bae
J-S
,
Yang
L
,
Manithody
C
,
Rezaie
AR
.
The ligand occupancy of endothelial protein C receptor switches the protease-activated receptor 1-dependent signaling specificity of thrombin from a permeability-enhancing to a barrier-protective response in endothelial cells
.
Blood
.
2007
;
110
(
12
):
3909
-
3916
.
54.
Bae
J-S
,
Rezaie
AR
.
Protease activated receptor 1 (PAR-1) activation by thrombin is protective in human pulmonary artery endothelial cells if endothelial protein C receptor is occupied by its natural ligand
.
Thromb Haemost
.
2008
;
100
(
1
):
101
-
109
.
55.
Roy
RV
,
Ardeshirylajimi
A
,
Dinarvand
P
,
Yang
L
,
Rezaie
AR
.
Occupancy of human EPCR by protein C induces β-arrestin-2 biased PAR1 signaling by both APC and thrombin
.
Blood
.
2016
;
128
(
14
):
1884
-
1893
.
56.
Ortiz Zacarías
NV
,
Lenselink
EB
,
IJzerman
AP
,
Handel
TM
,
Heitman
LH
.
Intracellular receptor modulation: novel approach to target GPCRs
.
Trends Pharmacol Sci
.
2018
;
39
(
6
):
547
-
559
.
57.
Liu
X
,
Ahn
S
,
Kahsai
AW
, et al
.
Mechanism of intracellular allosteric β2AR antagonist revealed by X-ray crystal structure
.
Nature
.
2017
;
548
(
7668
):
480
-
484
.
58.
Zheng
Y
,
Qin
L
,
Zacarías
NVO
, et al
.
Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists
.
Nature
.
2016
;
540
(
7633
):
458
-
461
.
59.
Oswald
C
,
Rappas
M
,
Kean
J
, et al
.
Intracellular allosteric antagonism of the CCR9 receptor
.
Nature
.
2016
;
540
(
7633
):
462
-
465
.
60.
Jaeger
K
,
Bruenle
S
,
Weinert
T
, et al
.
Structural basis for allosteric ligand recognition in the human CC chemokine receptor 7
.
Cell
.
2019
;
178
(
5
):
1222
-
1230.e10
.
61.
Liu
K
,
Wu
L
,
Yuan
S
, et al
.
Structural basis of CXC chemokine receptor 2 activation and signalling
.
Nature
.
2020
;
585
(
7823
):
135
-
140
.
62.
Isberg
V
,
Mordalski
S
,
Munk
C
, et al
.
GPCRdb: an information system for G protein-coupled receptors
.
Nucleic Acids Res
.
2016
;
44
(
D1
):
D356
-
D364
.
63.
Zweemer
AJM
,
Nederpelt
I
,
Vrieling
H
, et al
.
Multiple binding sites for small-molecule antagonists at the CC chemokine receptor 2
.
Mol Pharmacol
.
2013
;
84
(
4
):
551
-
561
.
64.
Zhong
Z
,
Ilieva
H
,
Hallagan
L
, et al
.
Activated protein C therapy slows ALS-like disease in mice by transcriptionally inhibiting SOD1 in motor neurons and microglia cells
.
J Clin Invest
.
2009
;
119
(
11
):
3437
-
3449
.
65.
Wang
Y
,
Zhao
Z
,
Rege
SV
, et al
.
3K3A–activated protein C stimulates postischemic neuronal repair by human neural stem cells in mice
.
Nat Med
.
2016
;
22
(
9
):
1050
-
1055
.
66.
Umemura
Y
,
Yamakawa
K
,
Ogura
H
,
Yuhara
H
,
Fujimi
S
.
Efficacy and safety of anticoagulant therapy in three specific populations with sepsis: a meta-analysis of randomized controlled trials
.
J Thromb Haemost
.
2016
;
14
(
3
):
518
-
530
.
67.
Kerschen
EJ
,
Fernandez
JA
,
Cooley
BC
, et al
.
Endotoxemia and sepsis mortality reduction by non-anticoagulant activated protein C
.
J Exp Med
.
2007
;
204
(
10
):
2439
-
2448
.
68.
Slosky
LM
,
Caron
MG
,
Barak
LS
.
Biased allosteric modulators: new frontiers in GPCR drug discovery
.
Trends Pharmacol Sci
.
2021
;
42
(
4
):
283
-
299
.
69.
Rezaie
AR
.
The occupancy of endothelial protein C receptor by its ligand modulates the par-1 dependent signaling specificity of coagulation proteases
.
IUBMB Life
.
2011
;
63
(
6
):
390
-
396
.
70.
McLaughlin
JN
,
Mazzoni
MR
,
Cleator
JH
, et al
.
Thrombin modulates the expression of a set of genes including thrombospondin-1 in human microvascular endothelial cells
.
J Biol Chem
.
2005
;
280
(
23
):
22172
-
22180
.
71.
Ashkenazy
H
,
Abadi
S
,
Martz
E
, et al
.
ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules
.
Nucleic Acids Res
.
2016
;
44
(
W1
):
W344
-
W350
.
You do not currently have access to this content.
Sign in via your Institution