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As reported, 40% of patients with diffuse large B-cell lymphoma (DLBCL) still experience refractory
disease or relapse after the standard R-CHOP (cyclophosphamide, doxorubicin, vincristine, and pre-
dnisone+rituximab) therapy.1,2 Various salvage therapeutic strategies, including autologous hemato-
poietic stem cell transplantation, have been attempted to overcome the resistance to treatment and
improve overall survival (OS). Nevertheless, the disease still relapses in 30% of patients.3,4 Regarding
immunochemotherapy, chimeric antigen receptor (CAR) T-cell therapy has been shown to be promising
for treating patients with refractory or relapsed DLBCL (rrDLBCL). However, CD19-CAR T-cell therapy
has shown only a 40% to 54% complete remission (CR) rate in patients with rrDLBCL,5-8 which may be
related to the genetic heterogeneity of the rrDLBCLs. The advent of high-throughput next-generation
sequencing technology has rapidly increased our knowledge of genomic alterations of DLBCL.9-11

Several reports have proposed the concept of molecular subtypes.12-16 Distinct classification
describes partially overlapping features, suggesting the existence of molecular subtypes and guiding
novel-targeted therapy. It is unclear whether the diverse molecular subgroups experience different
efficacy of CAR T-cell therapy. To investigate, we performed targeted deep sequencing of 92
hematologic-related genes in a cohort of 105 patients with rrDLBCL, in which most of the patients
underwent CAR T-cell immunotherapy after having a poor response to multiple lines of treatment. This
trial is registered on the Chinese Clinical Trials Registry as #ChiCTR1900020980.

One hundred five patients with rrDLBCL diagnosed from 2019 through 2020, including 6 patients with
transformed follicular lymphoma, 2 with transformed mucosa-associated lymphoid tissue lymphoma,
and 2 with transformed chronic lymphocytic leukemia lymphoma, were recruited for the study. Eighty-
four patients (86%, 84/105) had been treated with CAR T-cell therapy before enrollment in the study.
The patients were followed up until 15 April 2021. The study was approved by the Institutional Review
Board of Boren Hospital. Informed consent was obtained from all patients in accordance with the
Declaration of Helsinki. The baseline clinical characteristics of the 105 patients included in the study are
summarized in Table 1 and supplemental Table 1. The median age of the entire cohort at initial diag-
nosis was 49 (range, 13-79) years. Twenty-nine patients (27.6%) had a relatively high-risk International
Prognostic Index score of 4 to 5. The median time of relapse was 12.7 months. The median number of
chemotherapy cycles was 11. Among our cohort of patients, 11 with germinal center B cells (11 of 31,
35.5%) were classified as “double hit” or “triple hit” (DH/TH), harboring translocations of MYC and
BCL2/BCL6, whereas only 2 patients without germinal center B-cells (GCB; 2 of 74; 2.7%) were
classified as DH/TH. Most of the patients presented with advanced disease. Written informed consent
was obtained from each patient, and the study was approved by the Ethics Committee at the Beijing
Boren Hospital, according to guidelines of the 1975 Declaration of Helsinki.
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Table 1. Patient characteristics

Parameter Patients

Male 52/105 (49.5)

Female 53/105 (50.5)

Median age, y (range) 49 (13–79)

High serum LDH (>250 U/L) 74/96 (77.1)

High serum B2 microglobulin (>2.5mg/L) 55/96 (57.3)

ECOG 2 or higher 52/105 (49.5)

Stage III/IV 93/105 (88.6)

Extranodal involvement >1 50/105 (47.6)

Bone marrow involvement 13/103 (12.6)

IPI score

1 13/105 (12.4)

2 26/105 (24.8)

3 37/105 (35.2)

4, 5 29/105 (27.6)

Median chemotherapy cycles, n (range) 11 (3–22)

B symptoms 52/105 (49.5)

Hans classifier

GCB 31/105 (29.5)

Non-GCB 74/105 (70.5)

GCB non-GCB

MYC-break positive 12/31 (38.7) 7/74 (9.5)

BCL2-break positive 10/31 (32.2) 3/74 (4.1)

BCL6-break positive 7/31 (22.6) 11/74 (14.9)

Data are expressed as the number of patients/number of patients in the study group
(percentage of the total group), if not otherwise stated.
LDH, lactate dehydrogenase; ECOG, Eastern Cooperative Oncology Group; IPI,

International Prognostic Index.
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Figure 1A shows the distribution of the mutations of candidate
cancer genes found in more than 5% of the patients with rrDLBCL.
The patients in this series harbored a median of 6 (range, 1-24)
genetic drivers (supplemental Tables 2 and 3). The most frequently
mutated genes, found in >15% of cases, were TP53, KMT2D,
PIM1, MYD88, CREBBP, CD79B, and B2M (Figure 1A;
supplemental Tables 2 and 3). To assess the relationship between
gene-reated lesions and the success of CAR T-cell immuno-
therapy, we determined the genetic classification of patients with
rrDLBCL and discovered 4 robust subsets of tumors (clusters;
Figure 2). To display the genetic composition of the subtypes, we
selected a set of genetic features that were significantly associated
with a subtype (P < .05) and were present in >10% of the tumors
of each subtype (supplemental Table 5): EZB-like, MCD-like, N1-
like, and ST2-like.

Most of the 34 DLBCL tumors harbored a DH (BCL2 translocation
and MYC break) and also exhibited frequent mutations in the
chromatin modifiers KMT2D, CREBBP, and EZH2, as well as the
mutation of DDX3X with nonsynonymous single-nucleotide variant
and stop-gain mutations. Consistent with this finding, the EZB-like
subtype was found in most of the cases of transformed follicular
lymphoma and was strongly enriched in cases of DH GCB-type
DLBCL. The genetic features of the subgroup were similar to
those of the EZB-like tumors in Wright et al.16
28 MARCH 2023 • VOLUME 7, NUMBER 6
The 12 DLBCL tumors were characterized by gain-of-function of
NOTCH1 mutations, the B-cell differentiation regulator ID3, and
the BCR signaling intermediates BTK and PLCG2. A somatic KIT
p.M541L somatic mutation in N1-like tumors enhances the ability of
KIT to activate PI3K-AKT-MTOR and MAPK signal transduction
and to induce sustained proliferation of tumor cells and inactivation
of apoptosis signaling pathways.17 This subgroup exhibited fea-
tures analogous with the N1 tumors in Wright et al.16

The 52 DLBCL tumors exhibited frequent mutations in PIM1,
MYD88, and CD79B alterations which had been associated with
ABC-type DLBCL tumors.18 In tumors with the MCD-like subtype,
33% (17 of 52) carried mutations in MYD88, and 21% carried
CD79B aberrations (mostly the mutation Y196), with 11.5% (6 of
52) bearing both MYD88L265P and abnormalities in CD79B.
Additional alterations linked to ABC-DLBCL tumors included
alterations in IRF4 and ETV6 and inactivation of PRMD1. This
subgroup demonstrated features similar to those of the MCD
subtype in Wright et al.16

The 7 DLBCL tumors were characterized by mutations in JAK/
STAT pathway members (SOCS1, STAT6, and STAT3) and
immune escape (CD58). Half of the cases with this subtype were
found to have mediastinal involvement, suggesting a degree of
biological similarity to primary mediastinal B-cell lymphoma. The
genetic features of the subgroup were similar to the ST2 tumors in
Wright et al.16

Tumors in half of all cases were classified as MCD-like, 32.4% as
EZB-like, 11.4% as N1-like, and 6.7% as ST2-like (supplemental
Figure 1A). The N1-, MCD-, and ST2-like subtypes were domi-
nated by non-GCB cases, and EZB-like included mostly GCB
cases (supplemental Figure 1B-C). Most of the patients with DH/
TH DLBCL belonged to the GCB subgroup and the EZB-like
subtype (supplemental Figure 1D).

Eighty-four patients (86%; 84 of 105) in our cohort were treated
with CAR T-cells. After 3 months of CAR T-cell infusion, the CR
rate was 42.8%, and the overall response rate was 58.3%. A total
of 39.2% of the patients remained in CR at the cutoff date. The
median follow-up time was 13.63 months (95% confidence interval
[CI], 10.3-16.1). The median progression-free survival and OS in
patients with CAR T-cell treatment was 6.23 months (95% CI, 2.4-
not reached) and 16.2 months (95% CI, 8.7-not reached),
respectively, with a more favorable progression-free survival and
OS than the patients without CAR T-cell treatment (supplemental
Figure 2A-B). We next assessed whether the differences in
genomic lesions determine the therapeutic benefit after immuno-
therapy with CAR T cells. Patients reacted differently to CAR T-cell
treatment. Therefore, we next assessed whether the differences in
genomic lesions determine the therapeutic benefit after immuno-
therapy with CAR T cells. Among tumor genetic factors, only TP53
alterations were predictive of an inferior rate of CR in univariable
logistic regression (Figure 2A-B). No association of other cytoge-
netic features with CR rate was observed (Figure 2A). The patients
carrying mutations in TP53 and DDX3X had inferior OS after CAR
T-cell immunotherapy vs the wild-type group (Figure 2D-E). In these
patients with TP53 mutation, CAR T-cell immunotherapy can
improve the survival (supplemental Figure 2C). The CR rate was
similar between the DH/TH and non-DH/TH groups (Figure 2C).
Statistically significant differences in CR rates were not found
between the molecular subtypes (Figure 2F). We also found no
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Figure 1. Identification of groups of tumors with coordinate genetic signatures in patients with rrDLBCL. (A) A heat map showing individual mutations in 105 patient

samples color coded by mutation type. The top plot shows the absolute number of oncogenic mutations in each patient. The graph on the right shows the number of mutations in

each gene. Percentages represent the fraction of tumors with at least 1 mutation in the specified gene. Fifty recurrently and significantly mutated genes are sorted according to

their mutational frequencies. Genes with a mutation frequency >5% are shown. (B) Nonnegative matrix factorization consensus clustering was performed on mutated genes in the

105 DLBCL samples. Clusters with their associated landmark genetic alterations are shown. Distinct clusters are identified by color. Genetic alterations that were positively

associated with each cluster were identified by 1-sided Fisher’s exact test and ranked by frequency. P < .05, right.
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significant differences in OS between any of the molecular sub-
types (Figure 2G), but the patients with CAR T-cell treatment in the
MCD- and EZB-like subgroups had a more favorable OS than
those without CAR T-cell treatment (supplemental Figure 2D-E).

In summary, we identified 4 major genetically distinct rrDLBCL
groups, which resembled high-risk primary molecular subgroups
reported perviously.16 We found a limited effect of genetic classi-
fication on the outcome of CAR T-cell therapy. We also demon-
strated the potential prognostic impact of TP53 and DDX3X
mutations in patients with rrDLBCL who are treated with CAR T-
cell therapy. The patients with rrDLBCL who underwent CAR T-cell
treatment had a favorable OS. Nonetheless, further study is
needed to demonstrate an improvement in OS for rrDLBCL
patients after CAR T-cell therapy.
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