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Sphingosine 1-phosphate has a negative effect on RBC storage quality
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Key Points

• S1P declines during
RBC storage. S1P
supplementation to
human or murine
RBCs boosts energy
metabolism at the
expense of antioxidant
pathways.

• S1P worsens and
Sphk1 KO, or hypoxia,
promote stored RBC
posttransfusion
recoveries.
8/blooda_adv-2022-008936-m
ain.
Blood storage promotes the rapid depletion of red blood cell (RBC) high-energy adenosine

triphosphate (ATP) and 2,3-diphosphoglycerate (DPG), which are critical regulators of

erythrocyte physiology and function, as well as oxygen kinetics and posttransfusion

survival. Sphingosine-1-phosphate (S1P) promotes fluxes through glycolysis. We

hypothesized that S1P supplementation to stored RBC units would improve energy

metabolism and posttransfusion recovery. We quantified S1P in 1929 samples (n = 643,

storage days 10, 23, and 42) from the REDS RBC Omics study. We then supplemented human

and murine RBCs from good storer (C57BL6/J) and poor storer strains (FVB) with S1P (1, 5,

and 10 μM) before measurements of metabolism and posttransfusion recovery. Similar

experiments were repeated for mice with genetic ablation of the S1P biosynthetic pathway

(sphingosine kinase 1 [Sphk1] knockout [KO]). Sample analyses included metabolomics at

steady state, tracing experiments with 1,2,3-13C3-glucose, proteomics, and analysis of end-of-

storage posttransfusion recovery, under normoxic and hypoxic storage conditions. Storage

promoted decreases in S1P levels, which were the highest in units donated by female or

older donors. Supplementation of S1P to human and murine RBCs boosted the steady-state

levels of glycolytic metabolites and glycolytic fluxes, ie the generation of ATP and DPG, at

the expense of the pentose phosphate pathway. Lower posttransfusion recovery was

observed upon S1P supplementation. All these phenomena were reversed in Sphk1 KOmice

or with hypoxic storage. S1P is a positive regulator of energy metabolism and a negative

regulator of antioxidant metabolism in stored RBCs, resulting in lower posttransfusion

recoveries in murine models.
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Introduction

Red blood cell (RBC) transfusion is a life-saving intervention for millions of recipients worldwide every
year. However, the quality of packed RBC products declines during storage in the blood bank, which
promotes a series of morphological1,2 and biochemical changes3 that ultimately affect erythrocyte
physiology and posttransfusion performances. The quality of stored RBCs, as per the US Food and
Drug Administration (FDA) and the European Council guidelines, is defined by hemolytic propensity and
the capacity of transfused RBCs to circulate at 24 hours after transfusion (henceforth, posttransfusion
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recovery [PTR]); these 2 parameters increase and decrease,
respectively, as a function of storage duration.3

It has been argued that oxidative stress is the main driver of the
storage lesion.4 RBCs are well equipped to counteract oxidant
stress through different systems, among which the pentose
phosphate pathway (PPP) represents a critical lynchpin. The PPP
is the main pathway generating the key reducing equivalent
nicotinamide adenine dinucleotide phosphate, NADPH, which
participates in the scavenging of reactive oxygen species and
recycling of oxidized soluble small molecules (for example, the
glutathione system) and enzyme-catalyzed antioxidant batteries.5

Glucose-6-phosphate dehydrogenase (G6PD) is the rate-
limiting enzyme of the PPP, and it is highly polymorphic in
humans.6 Of note, antioxidant capacity,7 storage quality,8 hemo-
lytic propensity,9 PTRs,10 and posttransfusion hemoglobin incre-
ments11 are poorer in packed RBCs donated by volunteers
suffering from G6PD deficiency, a condition that affects ~500
million individuals to a variable extent, owing to a plethora of
genetic mutations, all resulting in a hypomorphic or unstable
G6PD enzyme.6 Because G6PD is a chromosome X–linked gene,
whose activity declines with age12 and affects lifespan in mam-
mals,13 it is interesting to note that donor sex and age8,14,15 affect
RBC antioxidant capacity and posttransfusion RBC performances
beyond the chronological age of the unit, that is, the days elapsed
since the time of donation.16,17

Others have noted that rapid depletion of high-energy phosphate
compounds (adenosine triphosphate [ATP] and 2,3-
diphosphoglycerate [DPG]) is a hallmark of the RBC metabolic
storage lesion.18 ATP consumption is accompanied by dysregu-
lated calcium ion pumps,19 resulting in intracellular calcium accu-
mulation and eryptosis.20 Reductions in ATP deprive erythrocytes
of a rate-limiting substrate for phosphorylation of structural mem-
brane proteins, which is critical to morphological homeostasis of
the stored RBC.21 By fueling ATP-dependent flippases, ATP
depletion in the stored RBC results in phosphatidylserine exposure
to the outer membrane leaflet and untimely removal upon trans-
fusion.3,22,23 DPG exhaustion by storage week 2 to 3 is mecha-
nistically linked to altered oxygen kinetics.22 Indeed, depletion of
DPG levels promotes increases in oxygen saturation (SO2) by
shifting the oxygen dissociation curve to the left,24 which in turn
promotes the concomitant storage-dependent formation of reac-
tive oxygen species2 that are triggered by Haber-Weiss chemistry
in the presence of elevated O2 levels. Indeed, heterogeneity in
baseline SO2 levels after processing is associated with heteroge-
neity in storage quality,25 to the extent that SO2 manipulation by
hypoxic storage improves energy metabolism, prevents the oxida-
tive storage lesion,26,27 and boosts PTRs in randomized clinical
trials in humans,28 as well as transfusion efficacy in rodent models
of trauma and shock.29 Among the mechanisms identified as key
drivers of the benefits of hypoxic storage is the alkalinization of
intracellular pH,30 and the mitigation of cysteine oxidation27 and
asparagine deamidation26 of key glycolytic enzymes. These factors,
combined with deoxyhemoglobin competitive binding to the
N-terminus of band 3 that displaces otherwise bound/inhibited
glycolytic enzymes,31-33 all contribute to boosting glycolysis and
ATP generation capacity in hypoxically stored RBCs, which ulti-
mately preserves oxygen kinetics of these products.34 Of note,
even though DPG and ATP synthesis is slowly restored upon
transfusion in vivo,35 the kinetics may be insufficient to meet the
1380 HAY et al
oxygen requirements in the hypoxic, massively transfused recipient
(for example, patients with trauma).

In previous mechanistic studies on high-altitude hypoxia and sickle
cell disease,36,37 we showed that sphingosine-1-phosphate (S1P)
supplementation promotes fluxes through glycolysis by mediating
hemoglobin binding to the N-terminus domain of band 3,37 thereby
displacing glycolytic enzymes, otherwise inhibited by competitive
binding to the very same domain of band 3.32,33 By promoting
glucose oxidation through glycolysis and the Rapoport-Luebering
shunt, S1P supplementation promotes the synthesis of ATP and
DPG. Exposure to hypoxia (in vivo or in vitro) promotes S1P syn-
thesis by RBC sphingosine kinase 1 (Sphk1), which is critical to
metabolic adaptations to high-altitude or pathological hypoxia (for
example, chronic kidney disease).37,38 However, previous studies
have shown that storage is accompanied by declines in S1P levels
(down to 19% of fresh values in day-30 units39), suggesting that
exogenous supplementation of S1P could be leveraged as a
metabolic intervention in stored RBC units. Other studies, however,
have either shown no storage-dependent change40 or additive
solution-dependent increases/decreases in S1P levels.41 In light of
this, first of all, we leveraged the largest sample set amenable for
S1P assessment from the REDS RBC Omics study,42 a longitu-
dinal study on ~2000 samples from 643 blood donors. After
confirming that storage causes a decline in S1P levels in RBC
units, especially those donated by donors characterized by extreme
hemolytic propensity from the REDS RBC Omics cohort,42 we
hypothesized that supplementation of S1P to human and murine
packed RBCs would improve storage quality, whereas genetic
ablation of Sphk1 would impair S1P biosynthesis and, conse-
quently, exacerbate the storage lesion by negatively affecting
glycolysis (and thus ATP and DPG synthesis).

Methods

REDS RBC Omics study participants and samples

RBC Omics was conducted under regulations applicable to all
human subject research supported by federal agencies as well as the
requirements for blood product manipulation specified and approved
by the FDA. The data coordinating center (RTI International) of REDS
was responsible for the overall compliance of human participant
regulatory protocols including institutional review board approval from
each participating blood center, from the REDS Central Laboratory
(Vitalant Research Institute), and from the data coordinating center,
as previously detailed.8,41 Donors were enrolled at the 4 participating
REDS US blood centers. Overall, 13 403 individuals aged ≥18 years
provided informed consent to participate in the study. Hemolysis
parameters (spontaneous, oxidative, or osmotic) were evaluated on
stored RBCs from these donors after ~39 to 42 days of storage.
Extreme hemolyzers (5th and 95th percentile) from the donors tested
for end-of-storage oxidative hemolysis were asked to donate a sec-
ond unit of blood. These units were sterilely sampled for metab-
olomics analysis (n = 643, storage days 10, 23, and 42). Blood
collection, sample processing, and other aspects of the screening
and recall phases of the RBC Omics Study have been extensively
described.9,14

Human RBC incubation with D7-S1P

To validate S1P uptake by human erythrocytes,43,44 RBCs (n = 8;
4 males and 4 females) were incubated at 37◦C for 0, 3, 6, and
25 APRIL 2023 • VOLUME 7, NUMBER 8
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24 hours in AS-3 additive solution supplemented with the stable
isotope–labeled D7-S1P (product #860659, Avanti Lipids) at 0, 1,
3, 6, or 12 μM.

RBC storage with S1P

Whole blood units were donated by 10 healthy donor volunteers
in CP2D (Haemonetics, Boston, MA). Two pools of 5 units were
made, upon leukofiltration, plasma removal, and suspension in
AS-3 additive solution, with or without supplementation of S1P
(product #MFCD00270077; CAS #26993-30-6; Sigma Aldrich,
St. Louis, MO) at 1, 5, or 10 μM.

Mouse blood collection, storage under hypoxic and

normoxic conditions, and PTR

All murine experimental protocols were approved by the University
of Virginia IACUC on 22 April 2019 (protocol n: 4269). Mouse
strains C57BL6/J, FVB and Sphk1 knockout (KO) have been
previously described.45,46 Murine RBC storage (for 3 and 6 days
for FVB mice, and 12 days for C57BL6/J mice), transfusion, and
PTR determinations were carried out as previously described, with
minor modifications.46 Whole blood was drawn by cardiac punc-
ture under sterile conditions into CPDA-1, centrifuged, and the
hematocrit was adjusted to 75% by removing supernatant. In a
subset of experiments, units were supplemented with 5 μM S1P.
For hypoxic storage, murine RBCs were bubbled with nitrogen gas
in a glove box until SO2 <50% before storage, whereas normoxic
counterparts reached SO2 >95% by the end of the storage period.
Sealed “units” were preserved at 37◦C for 1 hour and stored at
4◦C for 7 and 12 days. RBCs from C57BL6/J mice were used as
the test population and subjected to different storage conditions.
UBC-GFP mice (stock #004353) were used as recipients to allow
visualization of the test cells in the nonfluorescent gate. To control
for differences in transfusion and phlebotomy, RBCs from
ROSA26-LCB-mCHERRY mice (mCHERRY) were used as a tracer
RBC population (never stored) and were added to stored RBCs
immediately before transfusion, as recently described.47 PTR was
calculated by dividing the posttransfusion ratio (test:tracer) by the
pretransfusion ratio (test:tracer).48 A single PTR value >100% was
calculated across all replicates in all experiments, which was
explained by the tracer population being damaged and/or out-
performed by the test population. Because PTR >100% is not
biologically meaningful, this value was set to an absolute value of
100%, as standard practice in the field. At the time of transfusion,
blood samples were frozen in liquid nitrogen and stored at −80◦C
until subsequent analysis.

Glucose tracing experiments

RBCs (100 μL) from all the mouse strains investigated in this
study were incubated at 37◦C for 1 hour in the presence of
1,2,3-13C3-glucose (5 mM, Cambridge Isotopes, product #CLM-
4673) and stored for 7 and 12 days before determination of lactate
isotopologues +2/+3 (as markers of PPP-to-glycolysis fluxes), as
described.27

Ultra-high-performance liquid chromatography

(UHPLC)-mass spectrometry metabolomics

Frozen RBC aliquots (50 μL) were extracted 1:10 in ice cold
extraction solution (methanol:acetonitrile:water, 5:3:2 v/v/v).26
25 APRIL 2023 • VOLUME 7, NUMBER 8
Samples were vortexed and insoluble material pelleted, as pre-
viously described.49 Analyses were performed using a Vanquish
UHPLC coupled online to a Q Exactive mass spectrometer
(Thermo Fisher, Bremen, Germany). Samples were analyzed
using a 150 and 5 minute gradient-based method,49 as previ-
ously described.51,52 S1P measurements were performed via
the same platform described earlier, as validated in prior tech-
nical notes52 and RBC-centric studies on S1P,37,38 with the
auxilium of stable isotope–labeled internal standards (D7-S1P,
product #860659, Avanti Lipids). Data analysis was performed
through the auxilium of the software MAVEN.53 Graphs and
statistical analyses (either two-way analysis of variance
[ANOVA] or repeated-measures ANOVA) were prepared with
GraphPad Prism 8.0 (GraphPad Software, Inc, La Jolla, CA),
GENE E (Broad Institute, Cambridge, MA), and MetaboAnalyst
5.0.54 All raw data are available from the corresponding author
upon reasonable request.

Results

RBC S1P declines with storage and is higher in

packed RBCs from female and older donors

As part of the REDS-III RBC Omics study, we analyzed packed
RBC samples from 643 donors, at 3 storage time points (ie, days
10, 23, and 42; Figure 1A). These donors were selected among
an original cohort of 13 403 healthy volunteers enrolled at 4
different blood centers across the United States and tested for
RBC hemolytic propensity (spontaneous, following oxidant, or
osmotic insults). Subjects whose RBCs tested in the 5th and
95th percentile for hemolytic propensity were contacted and
invited to donate a second unit of blood, for a total of 1929
samples tested in this study. Measurements of S1P from packed
RBC units in this study showed a progressive depletion of this
metabolite as a function of storage duration (Figure 1B). Such
measurements were performed via UHPLC-mass spectrometry,
based on accurate intact mass and retention times validated
against unlabeled or deuterium-labeled commercial standards
(supplemental Figure 1A-B), which also confirmed RBC capacity
to take up exogenous S1P in a dose-response manner
(supplemental Figure 1C).

In the REDS-III RBC Omics cohort, S1P was nonnormally distrib-
uted across all blood donors at the end of storage (supplemental
Figure 2A). Identification of donors in the bottom or top 5% based
on S1P levels (supplemental Figure 2B) resulted in the identification
of 2 separate groups across storage within the REDS-III RBC Omics
cohort. Heat map representation of the top 50 metabolites based on
donor S1P levels (supplemental Figure 2C) indicated a positive
association between elevated S1P and glycolytic metabolites
(fructose bisphosphate, bisphosphoglycerate, phosphoglycerate,
phosphoenolpyruvate; supplemental Figure 3), markers of oxidant
stress (glutathione disulfide, methionine sulfoxide), and several
acylcarnitines, and a negative association with PPP metabolites
(6-phosphogluconate, pentose phosphate). Notably, factors like
additive solution, donor sex, and age were all associated with an
effect on RBC S1P levels, independent of storage duration
(Figure 1C-E). Specifically, RBCs stored in additive solution 1,
from female and older donors were found to have higher levels of
S1P (Figure 1C-E).
S1P IN STORED RBCS 1381



Units stored
for 42 days

REDS RBC Omics
Index Donation
4 Blood centers
13,403 donors

Second unit
Stored for

10, 23, 42 days

Metabolomics

Recalled Donors
(n = 643)

(Total 1,929 samples)

5th and 95th

% Hemolysis

A B

****

****

ns

6 � 106

4 � 106

2 � 106

0
10 23

Storage (d)
42

Impact of Storage

A
U

q-value = 4.29e-07

Impact of Donor Sex

Z
sc

or
e 

re
la

tiv
e 

ab
un

da
nc

e 4

3

2

1

0

–1

–2

–3

–4

Sex Female (n = 887) Male (n = 1042)

D

–0.015 –0.01 –0.005 0 0.005 0.01 0.015

Log2(fold change) per unit of age

–L
og

10
(q

-v
alu

e)

20

15

10

5

0

25 Decreasing with age

Impact of Donor Age on S1P levels
Volcano plot of Metabolic Correlates to Age

Increasing with age

S1P

E

C

6 � 106

4 � 106

2 � 106

0

**

**** **

10 23 42 10 23 42

AS1 AS3

Storage (d)

Impact of AdditivesS1P

Figure 1. RBC S1P decreases during storage and is higher in packed RBCs from female and older donors. (A) An overview of the REDS-IV RBC Omics program

is provided in panel A. (B-C) As part of the recalled donor arm of the study, 1929 units from 643 extreme hemolyzing donors were tested for RBC S1P levels (AUs, which

were found to decrease during storage (B), and were lower early on during storage in AS-3 packed RBC units (AU) (C). (D-E) Higher levels of S1P were observed in blood

donated by female donors (box and whisker plot; median ± ranges[D]), older donors (volcano plot of metabolic correlates to age across all blood donors tested in this study; x-axis

indicates log2-fold changes per unit of age for each metabolite and the y-axis indicates the negative log10 of q-values for such correlations [E]), independent storage duration

and additive. Asterisks indicate significance (ANOVA with multiple column comparisons; **P < .01, ***P < .001, ****P < .0001). AU, arbitrary unit.

D
ow

nloaded from
 http://ash.silverchair.com

/bloodadvances/article-pdf/7/8/1379/2045878/blooda_adv-2022-008936-m
ain.pdf by guest on 19 April 2024
Storage of human RBCs with S1P promotes

glycolysis and generation of ATP, at the expense of

steady-state levels of metabolites from the PPP and

other antioxidant pathways

Previous studies have shown that quality of RBCs declines with
storage, as determined by increased hemolytic propensity14 and
reduction in PTRs.35,55 Here, S1P decreases were observed as a
function of storage duration (Figure 1B). Packed RBCs from
female and older donors, all showing higher levels of S1P inde-
pendent of storage time, have previously been reported to have
lower hemolysis,14 metabolic dysregulation,8 and promote higher
hemoglobin increments upon transfusion.11,15 Based on these
results, we hypothesized that lower levels of RBC S1P are
1382 HAY et al
associated with metabolic impairment of ATP and DPG generation
capacity, and that storage quality of human RBCs could be
improved by supplementation of S1P to storage additives. To test
this hypothesis, human packed RBCs were stored in AS-3, either
untreated or supplemented with 1, 5, or 10 μM of S1P (Figure 2A).
These doses were chosen to recapitulate the ranges in human
RBCs exposed to high-altitude hypoxia,37 while remaining below
the critical micelle concentration of S1P in aqueous solution (12
μM).56 Statistical analyses, including time-series ANOVA as a
function of S1P supplementation dose, revealed a significant
impact of S1P on stored human RBC metabolism and superna-
tants (heat maps in Figure 2B-C, respectively). Notably, S1P did
promote increases in the steady-state levels of ATP and glycolytic
metabolites (pyruvate, Figure 2D); however, decreases in the
25 APRIL 2023 • VOLUME 7, NUMBER 8
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steady-state levels of PPP metabolites were observed in a dose-
response manner (for example, ribose phosphate and pentose
phosphate isomers; sedoheptulose phosphate; Figure 2D).
Consistently, we observed decreases in total glutathione (pools of
reduced and oxidized), and increases in free long-chain poly-
unsaturated and highly unsaturated fatty acids (C18:1, 18:3, 20:3,
20:5, 22:5, and 22:6), markers of oxidant stress–induced fatty acid
desaturase activity,57 as a function of S1P levels (Figure 2D).
Similarly, in S1P-supplemented RBCs we observed an accumula-
tion of oxylipins, including leukotrienes (LTA4 and LTB4) and
hydroxyeicosatetraenoic acids, as well as oxidized purines (for
example, hypoxanthine), markers of poor PTR in both mice48 and
humans58 (Figure 2D). In brief, storage in presence of S1P did
boost glycolysis and ATP levels, at the expense of the antioxidant
system, that is, the PPP and glutathione pools, and purine and lipid
oxidation (Figure 2E).
1384 HAY et al
Mouse RBC storage upon supplementation of S1P

decreases PTR

To further validate these findings in a tractable animal model, we
performed similar storage experiments in mice, in which PTR studies
are more easily executed and mechanistic intervention (for example,
via genetic ablation of the S1P biosynthetic pathway) are amenable
to testing. Cognizant that not all mouse strain RBCs store similarly,46

we performed follow-up studies on multiple mouse strains. Indeed,
some mouse strains have been previously46,48 labeled as good
storers, because of their elevated PTRs (for example, C57BL6/J),
whereas other mouse strains are characterized by an exacerbated
metabolic storage lesion and poor PTRs (FVB).46 Therefore, S1P
supplementation (5 μM) was performed both in good and poor
storer strains (Figure 3A), resulting in lower PTRs in both strain types
upon S1P supplementation (Figure 3B-C). An overview of the
25 APRIL 2023 • VOLUME 7, NUMBER 8
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murine protocol for measurements of PTR with the combined use of
UBC-GFP recipient mice and mCHERRY reporter cells is provided
in supplemental Figure 4A-C, along with representative scatter plots
from flow cytometry experiments. Poorer storage quality in S1P-
supplemented RBCs was associated with a measurable effect on
glycolysis, and free and acyl-conjugated carnitines in both good
storer C57BL/6 and poor storer FVB mice (heat maps in Figure 3D-E,
respectively).

Genetic ablation of S1P biosynthesis in Sphk1 KO

mice is associated with improved storage quality

Given the negative effect of S1P supplementation on human and
murine RBC storage quality, we hypothesized that an opposite,
beneficial effect would be observed in response to genetic ablation of
25 APRIL 2023 • VOLUME 7, NUMBER 8
the S1P biosynthetic pathway in Sphk1 KO mice. To test this
hypothesis, RBCs from wild-type (WT) C57BL/6 and Sphk1 KOmice
were stored (Figure 4A), which resulted in a beneficial effect on
storage-induced depletion of acylcarnitines and glutathione pools, and
mitigation of free fatty acid and purine oxidation product accumulation
(allantoate, heat map in Figure 4B). Confirming Sphk1 genetic abla-
tion, significantly lower levels of RBC S1P were observed in these
mice (Sphk1 mice had ~30% of S1P levels of WT mice at baseline -
Figure 4C). Sphk1 KO stored RBCs were also characterized by lower
levels of glycolytic metabolites (glucose-6-phosphate and hexose
phosphate isomers, fructose bisphosphate, glyceraldehyde-
3-phosphate, and DPG) and higher levels of PPP metabolites
(6-phosphogluconate, sedoheptulose phosphate; Figure 4D).
Consistent with the beneficial effect of decreased S1P levels, Sphk1
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mice (already with a C57BL6/J good storer background) had higher
PTR (P < .05) than WT good storer mice (Figure 4E).

Consistent with increased antioxidant capacity and improved
metabolic phenotypes and PTRs, Sphk1 mice were characterized
by a mitigated storage lesion to the proteome (Figure 5A-B).
Specifically, significantly lower levels of oxidized proteins (cysteine
and methionine oxidation) were observed in Sphk1 KO mice,
including the most abundant cytosolic and membrane proteins,
hemoglobin subunit beta 1 and band-3 anion transporter, respec-
tively (Figure 5C).
1386 HAY et al
Hypoxic storage of Sphk1 KO RBCs normalizes

glycolytic fluxes while preserving fluxes through the

PPP, thus further boosting PTRs

Hypoxic storage of human28 and murine (publication forthcoming)
RBCs mitigates the metabolic storage lesion and boosts PTRs by
promoting glycolysis and mitigating the oxidative storage lesion.
Given the apparent effect of Sphk1 on boosting the PPP at the
expenses of glycolysis, we hypothesized that altered glucose-
oxidation fluxes would be normalized in Sphk1 KO mice by stor-
age in hypoxia (Figure 6A), with consequent benefits on PTRs.
25 APRIL 2023 • VOLUME 7, NUMBER 8
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Although metabolic effects of hypoxic storage of WT RBCs
have recently been described (publication forthcoming), hypoxic
Sphk1 KO were found to have significantly different metabolism
(Figure 6B). Specifically, compared with their normoxic counter-
parts, hypoxic Sphk1 KO RBCs had higher glucose consumption,
as well as increased levels of multiple glycolytic metabolites
(hexose phosphate, DPG, phosphoenolpyruvate; Figure 6C).
These changes were not accompanied by decreases in the levels
of PPP metabolites (6-phosphogluconate) and total glutathione
pools, which were higher in the hypoxic Sphk1 KO mouse RBCs
(Figure 6D). These metabolic effects were accompanied by sig-
nificant improvements in PTRs (Figure 6E).

To further confirm the metabolic mechanism driving these obser-
vations, we performed tracing experiments with 1,2,3-13C3-glucose
(Figure 7A). This approach affords discrimination of metabolic
25 APRIL 2023 • VOLUME 7, NUMBER 8
fluxes through glycolysis and the PPP (Figure 7B) via determination
of the ratio of +3 and +2 lactate isotopologues (Figure 7C), as
previously described.27,32,33 Results clearly indicate that,
compared with WT normoxic RBCs, hypoxic WT RBCs had
significantly elevated lactate +3 and glycolysis/PPP ratios
(Figure 7D). Sphk1 KO mice had slower fluxes through glycolysis
compared with WT normoxic and hypoxic RBCs. However, hypoxic
Sphk1 KO RBCs had comparable fluxes through glycolysis to WT
normoxic RBCs (Figure 7D), despite lower overall storage-induced
accumulation of markers of oxidant stress (Figure 6).

Discussion

In this study, we delved into the role of S1P in RBC storage quality.
The underlying hypothesis was that storage depletes ATP and
DPG pools, and that S1P can boost ATP and DPG synthesis by
S1P IN STORED RBCS 1387
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promoting metabolic fluxes through glycolysis.37 Because the

literature was controversial on the impact of storage on RBC S1P
levels, either reporting declines,39 no change,40 or increases with
some additives,41 we performed S1P measurements on, to our
knowledge, the largest longitudinal sample set of stored RBC
samples available to date (~2000 samples from 643 donors at 3
time points) to confirm that S1P levels do decrease with storage.
Notably, we also observed higher levels of S1P, independent of
storage duration, in better-storing units (donors with lower hemo-
lytic propensity14), including units from female and older donors. To
test the hypothesis that S1P improves RBC storage quality, we
either supplemented human and murine RBCs with S1P before
1388 HAY et al
storage, or relied on mice lacking the capacity to synthesize S1P
(Sphk1 KO). As a result, PTR, proteomics, and steady state and
tracing metabolomics experiments all suggest that S1P does
indeed boost glycolysis and ATP and DPG generation in stored
human and murine RBCs; however, it does so at the expenses of
metabolic fluxes through the PPP. This metabolic rewiring comes at
the cost of a decreased antioxidant capacity and increased
storage-induced oxidation of proteins, lipids, and purines. Indeed,
S1P supplementation was associated with increases in the levels
of (i) purine oxidation products (hypoxanthine), the result of
oxidative stress–activated adenosine monophosphate deaminase
358; (ii) free polyunsaturated fatty acids, the result of oxidant
25 APRIL 2023 • VOLUME 7, NUMBER 8
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stress–induced fatty acid desaturase activation57; (iii) oxylipins, the
result of lipid peroxidation events triggered by dysregulated iron
metabolism48; and (iv) thiol groups, histidine and asparagine
oxidation in hemoglobin (at cysteine beta 93)59,60 and band 3,26 all
critical regulators of RBC function and structure. Of note, all of
these aforementioned lesions have previously been associated with
poorer PTRs,32,48,57-60 which is what we observed in S1P-
supplemented murine units. Genetic manipulation of Sphk1,45

the rate-limiting step in S1P biosynthesis in mature RBCs, coun-
teracts these phenomena, whereas hypoxia boosts glycolysis while
normalizing fluxes through glycolysis in Sphk1 KO mice and pre-
venting oxidative metabolic lesions (findings summarized in the
schematic in Figure 7E).

Notably, our results suggest that S1P supplementation phenocopies
G6PD deficiency, in which a boost in energy metabolism is
accompanied by suppressed fluxes through the PPP; as a result
G6PD-deficient RBCs are characterized by an increase in oxidant
stress to metabolites, proteins, and lipids,7,8 and a negative impact
on PTRs.10 Because G6PD activity (and thus PPP fluxes) have
previously been reported to decline with age,12 it is interesting to
note that, in this study, S1P levels were observed to be positively
25 APRIL 2023 • VOLUME 7, NUMBER 8
correlated with donor age. However, it must be noted that healthy,
frequent blood donors were enrolled in the REDS study, which
biases the population toward subjects with lower propensity to
hemolyze following oxidant insults, as reported.61 In addition,
because higher G6PD expression and activity levels are associated
with longer lifespan,13 a survival bias may exist in older donors who
are healthy enough to donate blood frequently. In female blood
donors, the negative effect of S1P on PPP activation may be instead
counteracted by increased chromosome X–linked G6PD protein
dosage, whereby RBC protein levels and activity are higher
compared with males despite chromosome-X inactivation.62 In
addition, it is worth noting that prior studies on the blood donor
exposome have shown how over-the-counter drugs that are not
grounds for blood donor deferral (for example, proton pump inhibi-
tors) can boost RBC S1P levels.63 Similarly, it is worth noting that
although no genetic polymorphism in Sphk1 was observed to be
associated with RBC hemolytic propensity in prior large GWAS
studies (for example, REDS III),9 variation in the MFSD2b gene64 (an
S1P transporter) was significantly associated with osmotic fragility of
the stored RBC.9 Indeed, erythrocytes efficiently utilize exogenous
sphingosines for S1P synthesis and export via Mfsd2b.44 The
combination of sphingolipid uptake, here validated with deuterium-
S1P IN STORED RBCS 1389
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labeled S1P dose-response incubation experiments, and RBC-
specific37 Sphk1 activity regulates not just intraerythrocytic levels of
SIP, with RBCs de facto acting as reservoirs that modulate circu-
lating concentrations of S1P.43

Of note, hypoxic storage of Sphk1 RBC boosted energy metabolism
while preventing the accumulation of oxidative stress markers. Hyp-
oxic storage improved PTRs of both Sphk1 and WT mice, observa-
tion in the latter confirming recent findings in mice.47 This observation
is interesting in that we had hypothesized a role for S1P in stabilizing
deoxyhemoglobin and promoting glycolysis. However, in the Sphk1
KO mouse the stabilizing effect of S1P on deoxyhemoglobin is
limited, which indeed corresponded to slower fluxes through glycol-
ysis compared with WT mice upon exposure to hypoxia. Alkalinization
of the intracellular milieu under hypoxic storage conditions had been
suggested to boost the activity of phosphofructokinase, biphospho-
glycerate mutase, and G6PD, the rate-limiting enzymes of glycolysis,
the Rapoport-Luebering shunt, and the PPP, respectively.65 Similar
beneficial effects on all 3 pathways are indeed observed when RBCs
are stored with alkaline additives.66,67 As such, this study provides
further evidence that the pH effect and the oxygen-dependent
metabolic modulation model proposed by multiple groups over the
years31-33,68 are mutually relevant in the economy of RBC energy/
redox glucose-oxidation fluxes, and that S1P does play a non-
secondary role in this system. Notably, storage-induced fragmenta-
tion of the N-terminus cytosolic domain of band 3,32,33,69 because of
radical attack or caspase activity,70,71 ultimately impairs the RBC
capacity to respond to oxidant stress by activating the PPP as a
function of high SO2, making S1P-induced promotion of deoxy-
hemoglobin interaction with the very same N-terminus of band 337

less mechanistically relevant. In light of the decreased stress to
band 3 under hypoxic storage conditions,26 it is interesting to
hypothesize that S1P supplementation in hypoxically stored erythro-
cytes may still represent a viable storage strategy to further enhance
the metabolic and posttransfusion benefits of these products.28

Similar considerations can be made for alkaline additives.66,67

It should be noted that this study focuses on the stored RBCs and
their posttransfusion performances in heterologous, healthy murine
recipients. As such, it does not take into account nonhealthy,
hypoxic transfusion recipients. Because S1P is depleted in patients
that are hypoxic with trauma/hemorrhagic shock72 or with sepsis,73

S1P-containing additives may boost oxygen kinetics in this recip-
ient population and phenocopy the beneficial effects of S1P ago-
nists like FTY720.74 In contrast, in certain categories of recipients,
like patients with sickle cell disease, stabilization of deoxy-sickle
hemoglobin is potentially deleterious because it would trigger
polymerization and sickling.36 All these considerations will be
1390 HAY et al
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critical if further investigations on the use of S1P as a supplement
to blood products are pursued.
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